If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25x^2=54
We move all terms to the left:
25x^2-(54)=0
a = 25; b = 0; c = -54;
Δ = b2-4ac
Δ = 02-4·25·(-54)
Δ = 5400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5400}=\sqrt{900*6}=\sqrt{900}*\sqrt{6}=30\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-30\sqrt{6}}{2*25}=\frac{0-30\sqrt{6}}{50} =-\frac{30\sqrt{6}}{50} =-\frac{3\sqrt{6}}{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+30\sqrt{6}}{2*25}=\frac{0+30\sqrt{6}}{50} =\frac{30\sqrt{6}}{50} =\frac{3\sqrt{6}}{5} $
| −6a −(−31)=64 | | 9(x^2-14)-12=-17 | | –4(x+5)=3x–11x–8 | | 2z-14=3z-3 | | 3a+21=2a+8 | | 7(x+3)+16=2(x-5) | | 3a+15=2a+4 | | 2y-2=3y+18 | | 2z+14=3z+15 | | 2z-14=3z+12 | | 1/2-1/x=1/2.5 | | (7x)+(x+7)+(3x+8)=180 | | 21-x=4x | | 1/2x+x+2x=90 | | –3y=–4y+6 | | y+4=33/4 | | 1-3(3x+6)+2x=26 | | 5x+2=-3+3x+19 | | F(x)=5x²+2x-7 | | X-(-16)=12+e | | x^2-17=11 | | 3x=0.0625 | | -8+7r+6+8r=180 | | 5x(2x-2)=0 | | -1+90+7p=180 | | 91+1+w=180 | | 7k+40+90+8=180 | | r+2=98 | | 4x+10=6x+60 | | p+49=90 | | 71°=8+9x | | z+5=99 |